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PREFACE 

This report presents major developments in a continuing research program in underwater acous- 
tics at the Naval Research Laboratory. These studies, begun in 1974, have investigated the spatial 
and temporal properties of low-frequency acoustic fields in the ocean. Their objective is to provide a 
priori estimates of the capabilities of highly directional receiving arrays and the signal coherence as it 
may be degraded by environmental irregularities. The NRL project initially concentrated on the 
degradation caused by scattering in the ocean volume. These studies were followed by studies of 
scattering at its boundaries. Both processes are irreversible and the irregularities causing the scatter- 
ing are statistically described. The statistical approach is natural for the ocean environment, because 
the principal parameters exhibit significant departures from their mean values. They vary from place 
to place in a manner that is statistically stable but difficult to measure in detail. This is true for 
volume parameters (e.g., sound speed deviations) [1] and for boundary parameters (e.g., bathymetric 
roughness) [2]. The statistical approach is therefore the appropriate method for predicting the perfor- 
mance of acoustic systems in the ocean. This is especially true for receiver array design tasks such 
as: 

• Predicting an environmentally constrained upper limit on array size to achieve specific 
performance levels (gain, resolution, and sidelobe suppression). 

• Developing a deployment or operational strategy for mobile or fixed arrays. For example, 
how many systems should be used, where should they be placed, and how are they best 
oriented, are all questions that this statistical model can help to answer. 

• Computing an envelope of array system performance for mobile tactical systems where bot- 
tom contact at different attack directions produces an output controlled by the magnitude and 
orientation of bottom roughness spectra. 

• Determining the probability of detecting target echoes or passive radiation with specific sys- 
tem parameters and operating conditions and as a function of the bottom spectral character. 

The NRL project has addressed the causes of degradation of spatial coherence of acoustic signals 
as the key new system issue. This is because substantial investment in technology depends on 
whether acoustic field properties, driven by tactics, systems, and operating area, will allow the 
coherent gain that antennas must achieve to be effective. Ocean acoustic volume effects have been 
dealt with in earlier reports [3-5]. This research should be extended, because scattering mechanisms 
and higher frequency regimes that were not previously studied are now of significant interest. 
Although ocean volume scattering is always present in underwater acoustic propagation, it is generally 
less than bottom scattering at all frequencies. The detailed bottom irregularities affecting an acoustic 
signal at any given instant usually cannot be known in sufficient detail to correct for the distortion 
they cause, but it is important to reliably estimate the expected reduction in receiver array perfor- 
mance. This report presents a model whose current version provides estimates of beam spreading of 
array outputs caused by a single encounter with a hard, rough ocean bottom. 

This report describes the theoretical, numerical, and computational basis of a computer model 
called the ocean-refraction bathy metric-scattering (ORBS) model.   This model estimates the effect of 



scattering by a rough, stochastically characterized, ocean bottom on the three-dimensional spatial 
coherence of an acoustic signal. The model allows for a user-defined sound-speed profile in the 
ocean. This model allows refraction in the water, three-dimensional bathymetric scattering, and spec- 
ular reflection to be combined realistically in the calculation. This combination gives ORBS a unique 
computational predictive capability that was previously unavailable. The model displays the computed 
acoustic field at a specified receiver location in terms of the simulated output of an arbitrarily oriented 
line array centered there. (With minor modifications, the program could model a more general array 
type, such as a line array with missing elements or a billboard array.) The computed outputs include 
the main peak and sidelobe levels of the simulated pattern, the half-power width, and the computed 
source bearing relative to the array. 

In its present form, the model considers cases where one bottom interaction is dominant. With 
minor modifications, the ORBS model can be adapted to some straightforward variations of this prob- 
lem, such as single-bounce propagation under rough ocean ice. 

VI 



THE OCEAN-REFRACTION BATHYMETRIC-SCATTERING (ORBS) MODEL 

1.  INTRODUCTION 

When a sound wave impinges upon a hard rough surface, a significant amount of the incident 
energy is incoherently scattered. This is an important phenomenon that degrades the performance of 
acoustic receiving systems operating on a signal field dominated by reflection and scattering from 
rough bathymetry. An array located over a rough bottom may be insonified by direct refracted 
arrivals, by reflections from areas on the bottom, and by energy scattered from the bottom. Gen- 
erally, depending on the acoustic frequency, the source/receiver geometry, and the characteristics of 
the bottom, any one of these components of the received sound may be dominant. Consequently, if 
the degradation in array performance caused by bottom scattering, which is usually a very strong 
diffusing mechanism, is to be evaluated, the contribution of each component must be computed accu- 
rately. 

The ocean-refraction bathymetric-scattering (ORBS) model computes array response in the 
acoustic field by propagation of the Fourier-transformed two-point mutual coherence function of the 
pressure field (the transform can be thought of as the power distribution in location and direction) 
along its characteristic trajectories. To compute these refracted trajectories accurately, ORBS allows 
for a realistic depth-stratified sound-speed profile as input data; a continuous, stratified curvilinear 
interpolating function then integrates the path elements. The number of paths required is dictated by 
the number of receiver points on the computed array, the number of beam directions considered, and 
the need to sample the acoustic field finely enough to integrate the beam power accurately. In a typi- 
cal problem, tens or hundreds of thousands of characteristics may be required. For each scattered 
path, a cross section (probability for scattering) must be computed; ORBS uses a modified form of 
Kirchhoff theory [6] for this. To make the large number of cross-section calculations feasible, the 
model uses an approximation to the Kirchhoff integral that replaces the numerical integration by a sin- 
gle function evaluation (of the bottom roughness spectrum). This reduces the computation time by 
almost two orders of magnitude with little loss of accuracy [7]. 

Because it must deal with scattering out of the plane of the incident wave, the calculation of the 
characteristics is three-dimensional. To 'start up' this three-dimensional calculation, ORBS ordinarily 
uses a parabolic equation (PE) model [8] to propagate the sound from the source to the scattering 
region. In a long-range case, propagation up to the region of the receiver is typically modeled as 
cylindrically symmetric, and a split-step PE calculation in the range-depth plane is used [9,10]. How- 
ever, three-dimensional PE models exist [11] and could be used, if appropriate, for this phase of the 
problem. In a typical short-range, bottom-bounce, active or passive sonar case, the startup field is 
required at a range of a few kilometers (or less) from the source, and a cylindrically symmetric PE 
calculation or simulated source field is used. 

Manuscript approved December 27, 1987. 
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Section 2 is an overview of the propagation of the coherence function transform in ORBS and its 
use in computing the directional response of an array. Section 3 describes the model formulation for 
the redirection of acoustic energy at a scattering point on the bottom. Section 4 presents sample com- 
puted results for varying geometries and varying parameters of the two-dimensional spectrum describ- 
ing the rough bottom. Section 5 is a summary of the report. The important computational algorithms 
used are described in detail in appendixes, and a guide to program operation is included. 

2. THE MUTUAL COHERENCE FUNCTION AND ARRAY RESPONSE 

Figure 1 shows the two phases of the ORBS propagation calculation. The first phase comprises 
the region from the source to the range Rp in the figure. In a short-range bottom-bounce case this 
region may span only a few kilometers and serve simply to start up the bottom-interaction phase of 
the calculation. In a long-range, deep-basin case where a sound channel is present, it may span tens 
or hundreds of miles. The main phase of the calculation is in the region where bottom interaction—in 
particular, a single bottom bounce—is expected to provide the dominant paths for sound reaching the 
receiver. Bottom reflections and scattering introduce propagation directions that are not cylindrically 
symmetric about the source, so a fully three-dimensional calculation is required in this region. 

Receiving 
Array 

Coherence Function 
Computed at R = Rn 

Scattering from 
Rough Bathymetry 

Fig. 1 — The concept of the ORBS propagation algorithm in the bottom 
interaction region. Rp is the "source cylinder" range, and R^ is the 
range of the center of the array. A scattered path and a corresponding 
set of incident paths are shown. 

In the first region, before significant bottom interaction is encountered, a two-dimensional model 
is usually adequate. To start up the ORBS algorithm, the two-dimensional Helmoholtz equation for 
the complex acoustic pressure p{r,z) is approximated in this region by the parabolic equation (PE) 
[8] 

likQp, +p^ + k^[n\r, z) - l]p =0. m 

The coordinate system consists of depth z measured positive downward from the ocean surface and 
range r measured horizontally from the sound source. In Eq. (1), n is the index of refraction 
(n(r, z) — CQ/c{r, z), where c{r,z) is the sound speed at the point r, z and CQ is a reference 
sound speed), and kQ = lirf /CQ where / is the source frequency measured in Hz. The parabolic 
equation is solved by the split-step algorithm [9,10]. 
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Thus, with use of the parabolic equation method, the acoustic field is known at range r --=^ Rp 
(Fig. 1) as a function of depth.   At this range, we form the two-point product of the acoustic field, 

^ (.r,Zi,Z2) = p{r,Zi)p* (r,Z2), '.'■ 

where the asterisk indicates complex conjugation.   The two points are at the same range r.  The prod- 
uct is now written in mean-and-difference coordinates in depth: 

Z   = (Zi  + Z2)/2, S   = Zi  - Z2 

and transformed in the depth-difference coordinate 

rir,z,4>) = f Fir, z+^,z-h e-'"'^'"'ds . (2) 
-°° 2 2 

r(r, Z\, Z2) is the two-point mutual coherence function of the complex acoustic pressure field. 
Its Fourier transform T{r, z, <j>) can be regarded as a power density or distribution in 4>, with <^ being 
the direction of energy propagation in the vertical. This function is useful because there is a transport 
equation for propagating it, and there is a method of using it to compute array response. In the text 
that follows, the transformed coherence function is denoted as f (r,k) where r denotes a point in 
three-dimensional space and the unit vector k specifies a direction. The relation between f in three 
dimensions and T defined in a plane is discussed rigorously in Appendix A. 

From the Helmholtz or the parabolic equation, a transport equation can be derived for propagat- 
ing the transformed coherence function. This is a differential equation whose solutions are the 
characteristic contours, along each of which the value of f is constant. References 5 and 12 provide 
further discussion of the transformed coherence function and its transport equation. 

In the bottom-interaction region, ORBS uses a propagation algorithm based on the fact that the 
characteristics of the transport equation for f are trajectories computationally identical to the rays of 
geometric acoustics [12]. Within this limited region, we assume that horizontal variation of the sound 
speed in the ocean is negligible, i.e., the sound speed is a function of depth only. The angular power 
distribution at a point on the array is given by the value of f at the point. This is computed by trac- 
ing a discrete set of characteristics (rays) from points along the array backward to the "source 
cylinder" where the characteristic value of f for each path can be evaluated. This source cylinder is 
defined hy r = Rp. To compute the total field, it is necessary to include contributions from paths 
specularly reflected from the bottom, from paths scattered by it, and from direct waterborne paths 
(those not encountering the bottom). The backward-looking algorithm is used for computational effi- 
ciency; it guarantees that the program never needlessly computes paths that do not reach the array. 

The program thus computes f at a set of discrete points, which can be regarded as hydrophones 
in an array. (We consider a linear array here for simplicity and because it represents the current 
implementation of the model.) The next step is to compute the magnitude of the directional array 
response, usually defined as 

A{d) =^     \    w{Y)p{Y)Qxp{-ikQY ^me)dY, (3) 
-L/2 
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where Y is the coordinate locating a point on the array, p{Y) is the acoustic pressure, kQ is the acous- 
tic wave number, 6 is the steering angle, L is the array length, and w(Y) is the weighting function 
used in the beamforming. Appendix B shows that the angular power distribution observed by the 
array can be written as a weighted integral of F over the array: 

< \Aie)\^> = l\ la(Y, \P, d)r (Y, k) cos \l^d\PdUdY, (4) 

where a{Y, \}/, 6) is computed from w(Y). This observed intensity distribution is an ensemble aver- 
age arising from the stochastic description of the rough bottom. The angles xp and U specify the 
direction of k in a coordinate system to be defined next. 

The array may be yawed and/or tilted with respect to the fixed coordinate system in the ocean. 
It is convenient to define directions of paths traced from a point on the array in a coordinate system 
that is fixed with respect to the array. Figure 2 shows the unit vector k', the initial direction of a 
path traced from point P on the array. (The unit vector k = — k' is the local direction of the wave 
vector on this path.) In Fig. 2, i/' is measured from a plane whose normal is the array axis; it is a 
beam angle measured from broadside. All unit vectors k' having a common beam angle xj/ describe a 
right circular cone, and fi is the angle defining the direction within the cone. These coordinates are 
chosen because a linear array cannot distinguish among different arrivals having a common beam 
angle. ORBS samples the acoustic field by tracing out a two-dimensional array of paths at equal 
increments in xj/ and fl. Each path is traced to its intersection with the bottom (paths not interacting 
with the bottom are a special case to be discussed below). Appendix C describes the tracing formulas 
used in the model. 

Fig. 2 — Angular coordinates defining a path 
direction with respect to the array. All unit 
vectors k' at point R on the array, with beam 
angle !/■, form a cone. Contributions from all 
angles fi within the cone are summed. 

Because ORBS uses a receiver-to-source propagation algorithm, it expresses the power prop- 
agated by each scattered path as a weighted summation over all possible paths from the source to the 
scattering point. The weighting function in this summation is the differential cross section for scatter- 
ing from the rough bottom and is discussed in Section 3. The program also tests for the existence of 
a specular reflection at each bottom scattering point and computes the appropriate reflection coeffi- 
cient whenever a reflected path is found. 

The special case of paths not interacting with the bottom is simpler because each path can be 
traced directly back to the source cylinder in a single vertical plane. (This follows from the assump- 
tion that the sound speed depends only on depth in the bottom-bounce region.) The refracted-only 
part of the calculation accounts for a small part of the computer time, most of which goes to comput- 
ing the large set of incident paths for each scattered path. 
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The essential features of the ORBS propagation algorithm can be summarized as: 

• A wave model is used to propagate the acoustic field from the source to the bottom-bounce 
region. At this point, the mutual coherence function and its Fourier transform f are com- 
puted, because a ray like transport equation for f exists and because f can be used to compute 
array response. 

• Ray computations are used to propagate the field through this bottom-bounce region, so that a 
fully three-dimensional calculation of the refracted, coherently reflected, and incoherently 
scattered paths can be made there. Also, the array and the mean bottom plane may both be 
oriented arbitrarily. In principle, any array configuration could be represented by a straight- 
forward modification of the program. 

• The raylike computation of bottom-scattered paths permits the use of Kirchhoff theory to com- 
pute the scattering cross section as a weight for each path when the paths are summed at the 
array. Thus the resulting summation includes a stochastic ensemble average of the angular 
power distribution of bottom-scattered energy received at the array. This distribution function 
is used to compute a simulated array response. 

3.   COMPUTING ARRAY RESPONSE WITH BOTTOM-INTERACTING PATHS 

This section shows how the array response integral of Eq. (4) is formulated when the function f 
in the integrand is computed from paths that are bottom-reflected or scattered between the source and 
the array. These calculations require transformations between different coordinate systems and 
transformations of the arguments of delta functions in the integrands, which may introduce nontrivial 
Jacobian factors. 

Figure 3 shows the geometry of the problem. We assume that a single sound speed profile 
characterizes the bottom-interaction region, so that each path traced (at least until it contacts a boun- 
dary) is confined to one vertical plane. This plane, labeled PR, contains a point R on the array and a 
scattering point B in the mean bottom plane. (The angle a is the yaw of the array.) The vertical 
plane Ps contains B and the source 5. The angles d and 8 specify the azimuths of the two planes, 
and n^ and 115 are the respective unit normals. Thus the figure defines the propagation planes for 
two traces, Pg for an incident path and P^ for a scattered (or reflected) path. The two paths meet at 
point B, as shown in Fig. 4. Unit vectors q and k are the directions of the incident and scattered 
paths, respectively, at B. 

It is convenient to define the directions of q and k in a coordinate system that is fixed with 
respect to the bottom at B, because the scattering cross section is a fiinction of the incident and scat- 
tered angles in such a system. Figure 4 shows the system we use; its basis is the set of unit vectors 
[n, p, d], where ft is the normal to the mean bottom plane, p is the downslope direction in the mean 
bottom plane, and d = n x p (making d horizontal). The incoherent part of f in the scattered 
direction can be expressed as an integral over incident directions, where d^ is the polar angle meas- 
ured from d and <t>q is an azimuth measured from p: 

Tsca. (r^> k) = ij sin 6^ j^^ ^^YT^ 6 (q• ft,) f (r^, q) rf0^ dd^ , (5) 
.2 ■,      - 

where r^ is the location of the scattering point, a (q — k) is the differential cross section per unit 
area for scattering from q into k (see Appendix D), and the delta function requires that each incident 
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Fig. 3 — The coordinate system used in the propa- 
gation calculation. The z-axis is positive downward 
(into the page). The angles 8 and 8 are azimuths of 
the vertical planes of the antecedent and scattered 
paths, respectively. The angle a is the yaw of the 
array (rotation about a vertical axis, from broad- 
side). 

— Y 

Fig. 4 — The antecedent and scattered directions at 
the bottom point B are defined by wave vectors q 
and k, respectively. The bottom-fixed coordinate 
system [n, p, d] is shown. 

vector q must lie in P^. The integral of Eq. (5) can be evaluated by some manipulations that simplify 
the delta function so that the integration over (j)^ can be performed. The resulting integral over 6 is 
easily transformed to an integral over (j), the vertical angle of the incident direction in P^: 

fscat OTB, k) = j ^     "^"^^ Z ^^ f (rg, q(0)) dci>. 
-—     nk 

2 

(6) 

From Eq. (4) the array response as a function of steering angle 6 caused by the incoherent part of the 
acoustic field is written 

< MW l^>scat = ^^^a(Y,rP,e) f,eat (r g (Y ,xly ,U), k (y,i/',Q) COS ^PdxP dQ, dy (7) 

where T^^^^ (r^, k) is given by Eq. (6).   Equation (7) explicitly shows the dependence of rg, q, and k 
on y, ^i', and Q (the location and direction of the scattered path at the array). 

Now consider the contribution of the specularly reflected part of the field, which can be written 
(from Eq. (4)) 

<^ W I ^>ren  = 1 H «(^''/''^) r {YB{Y,^l^M), £(^,^',0)) COS 1^ d^P dQ dY. (8) 
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When r(rB, k), the characteristic value on the reflected path, is computed by evaluating the value on 
the incident path, Eq. (8) becomes 

< l^(^) l^>refl = 1 H a(Y,^,&) f {rs{Y,^p,Q), k(y,vi',Q)) 8 (q,,fl - ft,) cos ^ d^P dQ dY ,   (9) 

where q^^^ must be in the specular direction: 

q,ef, {Y,rP,U) - kY,^,m - 2n [h-k(Y,rP,U)]. 

Again, the notation indicates that the location r^ and the directions k and q of the reflected and 
incident paths at B are functions of the location and direction of the reflected path at the array. The 
delta function requires that the incident path producing the reflection be in the vertical plane contain- 
ing the source; otherwise the integral must vanish. As above, some manipulation of the delta function 
is used to facilitate the integration over one variable in the multiple integral. The result is an integral 
over Q and Y: 

,, re f(rB(y,i/', («),«), q(l','^,(fi),n) 
<M(g)|^>=X;ffa(y,v.,(Q),g) cosiA.^n^y.      (lo) 

2 
— ft,-qrefl(}','/',fi) 

"A = !/',(«) 

Here, the derivative in the denominator can be approximated numerically by tracing a path having a 
slightly different value of ^ whenever a specular reflection is found. Ordinarily only one solution 
t/',(0) exists. 

4.  SAMPLE OUTPUTS FROM THE ORBS MODEL 

In this section we present the results of some sample ORBS calculations. The first case uses 
environmental data from the vicinity of the Gorda Rise in the northeastern Pacific (near 43 °N, 
127°W), an area whose bathymetry has been extensively mapped and statistically analyzed [2,13]. 
Roughness "provinces" in the region have been found with spatial amplitude spectra having a 
power-law dependence, in the formulation of Ref. 2, 

A(k) ~ k-'', 

where k is the spatial wave number and 1 < Z? < 2. An amplitude spectrum in Ref. 2 with a power 
law coefficient b = -1.5 corresponds to a roughness spectral density function in our formulation 
(see Appendix D) 

S(k) ~ k -4 

Accordingly, we model the ocean bottom in a typical subarea of the Gorda Rise with the roughness 
spectrum and correlation function (its two-dimensional Fourier transform) 

S(k) =47r(ffL)2/[l + (kLff, 

and 

Wir) ^(r/L)Kiir/L), 
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where a is the rms residual bottom height and L is a correlation length. L may be taken to 
correspond to the longest spatial wave length observed in the subarea (i.e., its size) and a is the total 
rms residual height over all fc-space,  ^i is the modified Bessel function of the second kind. 

Figure 5 shows the geometry used for the sample calculations. The mean ocean bottom is a 
horizontal plane of depth 2972 m. A 1 kHz beamed source 5 is at a depth of 100 m. The receiving 
array is at C, also at a depth of 100 m. The source beam pattern is aimed 15° down, with a half- 
power width of 5°. Figure 6 is a gray-scale plot showing the result of a parabolic-equation intensity 
calculation for this problem, with a highly reflective bottom (20° critical angle). The shading in each 
range-depth cell denotes the intensity relative to cylindrical spreading; darker shading means higher 
intensity. Figure 7 is a similar plot. However, for the PE calculation, bottom roughness here is 
introduced by pseudorandom variation of the interface depth about the mean bottom depth, with an 
rms residual roughness of 20 m and a correlation length of 400 m. The rough bottom thus generated 
is one realization of an ensemble of bottoms characterized by these statistical parameters. (The ORBS 
calculations to follow are, of course, based upon the statistics of ensemble averages.) Although the 
two figures have the same general features. Fig. 7 clearly shows bottom scattering and qualitatively 
suggests deterioration of coherence in the reflected and scattered field. 

1000-Hz Source 150-m Array 
100 

2972 m 

20 km 

Fig. 5 — Configuration for the sample calculations 
of Figs. 6 to 16. A beamed 1 kHz source is at 5, 
and the receiving array, which may be horizontal or 
vertical, is centered at C. 

3200 
0 5 10 15 

Range (km) 

Fig. 6 — Gray-scale intensity plot for the sample 
problem, from a parabolic equation calculation with the 
Gorda Rise environment and a smooth reflective bottom 

800- 

£  1600- 
Q_ 

2400 
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Fig. 7 — Gray-scale intensity plot, similar to Fig. 6, 
with the smooth bottom replaced by a deterministic rough 
bottom 
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The receiver in the problem is a 150-m array centered at a depth of 100 m and oriented either 
vertically or horizontally. In Figs. 8 and 9 the array is at a range of 20 km, in the beam of bottom- 
reflected energy, and horizontal. In Fig. 8 ORBS has averaged, over the 21 phones in the array, the 
relative beam levels for the smooth-bottom case of Fig. 6, i.e., the received energy reaches the array 
by coherent reflection. Figure 9 is an analogous plot for a rough-bottom case with the parameters of 
Fig. 7, i.e., the received energy reaches the array by bottom-scattered paths. (The power levels on 
these plots are relative to the same arbitrarily normalized source level.) The peak of Fig. 9 is ~ 8 dB 
lower and 2° broader than the peak of Fig. 8. Figure 10 shows the array-processed beam patterns 
corresponding to the two cases superimposed on a single graph. (Appendix B describes our algorithm 
for array simulation.) The half-power width increases from 0.4° for the reflected case to 2.5° for the 
scattered case. 
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Q- 

1000 Hz             150-m array at 100 m 
Array tilt 0.0°, Yaw 0.0° 

10- Bottom slope 0.0°, Yaw 0.0° 

CT = 0 m, L = 400 m 

0.00% scattering at 20° grazing angle 

0- 
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-30- 1 

-40- 

'■ 

,       .       ,       1 

2-8-4             ( 
' ' 1 ' 1 >  

)              4               8              1, 
Angle (deg) 

Fig. 8 — Directional distribution of received energy with 
horizontal receiving array at 20-km range and smooth 
reflective bottom 

In Figs. 11 and 12, the array is vertical and the mean phone levels are computed (as in Figs 6 
and 7). Figure 11 is the smooth-bottom case at 20 km,* and Fig. 12 is the rough-bottom case. Once 
agam, the peak is lowered and broadened in the rough-bottom case. Figures 13 and 14 show the hor- 
izontal array at a range of 15 km, at the edge of the zone between the source and the first strong 
bottom-reflected remms. Not surprisingly, the received level in the reflected case (Fig 13) is 8 dB 
lower than at 20 km. However, in the scattered case (Fig. 14), the peak level has dropped only 3 6 
dB, showmg that a rough bottom scatters a significant amount of energy into the otherwise uninsoni- 
fied region. In fact, at shorter ranges in this region, scattered energy is received where the reflected 
energy has virttially disappeared. Figure 15 summarizes this effect by plotting the relafive maximum 
beam levels at the horizontal array as functions of range for the reflected and scattered cases The 
reflected energy disappears for ranges < 14 km, while in the scattered case energy still appears here 

*The sharp cutoff at 17" in Fig. II results from the cutoff in the eigenray set in the smooth-bottom ( 
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Fig. 9 — Directional distribution of received energy for the 
sample problem with the horizontal receiving array at 20 km 
range and stochastic bottom scattering. The source level is 
the same as in Fig. 8. 
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Fig. 10 — Array-simulated beam response patterns 
corresponding to Figs. 8 and 9. The dashed curve is for the 
smooth bottom (a = 0) and the solid curve is for the rough 
bottom (a = 20 m). 
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0.00% scattering at 20° grazing angle 
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Fig. 11 — Directional distribution of received energy for the 
sample problem with vertical receiving array at 20 km range 
and smooth reflective bottom. The source level is the same as 
in Fig. 8. 
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Fig. 12 — Directional distribution of received energy for the 
sample problem with vertical receiving array at 20 1cm range 
and stochastic bottom scattering. The source level is the same 
as in Fig. 8. 
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Fig. 13 — Directional distribution of received energy for 
the sample problem with vertical receiving array at 15 
km range and smooth reflective bottom. The source 
level is the same as in Fig. 8. 
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Fig. 14 — Directional distribution of received energy for 
the sample problem with vertical receiving array at 15 
km range and stochastic bottom scattering. The source 
level is the same as in Fig. 8. 
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Fig. 15 — Level of peak arrival at horizontal array 
as a function of range for a smooth bottom (a = 0) 
and a stochastic scattering bottom (a = 20 m) in the 
shadow-zone region for the Gorda Rise case 

Figure 16 shows the geometry for a second set of calculations. A 100 Hz source is at a depth 
of 100 m, 216 km from a 360-m horizontal array at a depth of 2700 m. The bottom slopes down- 
ward, away from the array, at an angle of 15°. The bottom is characterized by the same isotropic 
correlation function used in the short-range problem, but both a and L are allowed to vary. Figure 
17 shows a family of plots of array signal gain (ASG) vs rms roughness, with the bottom correlation 
length as a parameter. Figure 18 is an analogous plot of half-power width. In both figures, a and L 
are expressed in units of the acoustic wavelength, and direct arrivals are omitted. Because the scatter- 
ing cross-section formulas contain only the ratios of these parameters to the wavelength, the calcula- 
tions are independent of frequency. They encompass a wide range of values for a and L. For a 24- 
wavelength horizontal array in this configuration, the curves predict good performance (ASG within 
~2 dB of reference level) when a/X < 2 and L/X > 120. At 100 Hz, these values are about the 
same as those used in the Gorda Rise example. 

216 km- 

100 m 

3840 m 
^^^^^^^^^ 

2700 m 

3000 m 

212 km- 

Fig. 16 — Source-receiver configuration for the 
calculations of Figs. 18 to 21. The source is at S; the 
horizontal array is centered at C. 
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Fig. 17 — Array signal gain as a function of rms bottom roughness for several 
values of isotropic bottom-height correlation length. Lengths are normalized by 
wavelength; only the scattered energy is included in the computation. 
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Fig. 18 — Half-power beamwidth as a function of rms bottom roughness for 
several values of isotropic bottom-height correlation length. Lengths are 
normalized by wavelength; only the scattered energy is included in the 
computation. 

14 



. NRL REPORT 9123 

Finally, Figs. 19 and 20 illustrate cases where the bottom height spectrum is anisotropic, i.e., 
the correlation lengths L^ and Ly in the mean bottom plane are different (see Appendix D). In this 
context the x-direction is upslope in the bottom plane, and the j-direction is transverse to the slope. 
Again, direct arrivals are omitted. The plots show that the scattering is strongly dependent on the 
transverse correlation length and virtually independent of the slopewise correlation length. Since nei- 
ther bottom nor array is yawed in these calculations, the upslope direction is perpendicular to the 
array. The results show that although scattering in the vertical may change the level of sound radia- 
tion reaching a horizontal array, it does not affect the detected directionality. 

0} o c 

«4—       -2. 

CO 

O 
CO 
< 

-3 

-4- 

\-J\ = 320 

160 200 

Transverse Correlation Length 
240 

L,A 
280 320 

Fig. 19 — Array signal gain for an anisotropic rough bottom. L^ and Ly are the 
bottom-height correlation lengths, parallel and perpendicular, respectively, to the 
propagation direction. Lengths are normalized by wavelength; only the scattered 
energy is included in the computation. 

5.   SUMMARY AND CONCLUSIONS 

We have described a practical model that predicts statistically the effect of rough-bottom acous- 
tic scattering in situations where one bottom interaction is dominant. The ORBS model permits the 
use of measured environmental data for the sound-speed structure and bottom-roughness statistics, so 
that realistic calculations can be made for specific ocean areas. The bottom is characterized in the 
model by a basic and widely used measure of roughness, the power spectral density of residual 
bottom-height variations in the spatial frequency domain. This roughness spectrum requires only a 
few parameters, and its functional form in the program can readily be changed to conform to experi- 
mentally measured spectra. Refraction in the water column, bottom reflection and scattering in three 
dimensions, and (optionally) anisotropic bottom roughness are all considered in the model. 

The report also demonstrates the application of an exponential substitution method that provides 
an accurate and computationally efficient approximation for the Kirchhoff scattering integral for large 
values of rms roughness. The approximation takes about 1 % of the time required for numerical 
evaluation of the integral. With this approximation, a problem involving a total of about 10"^ scatter- 
ing paths requires about 30 min of CPU time on the VAX-11/780 computer. (The present code does 
not use an array processor.) 
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Fig. 20 — Half-power beamwidth for an anisotropic rough bottom. L^ and Ly 
are the bottom-height correlation lengths, parallel and perpendicular, 
respectively, to the propagation direction. Lengths are normalized by 
wavelength; only the scattered energy is included in the computation. 

The short-range sample calculation in Section 4 shows the use of the model in a realistic Pacific 
Ocean environment with known bottom roughness characteristics. ORBS computed the ensemble- 
averaged directional distribution of energy that is forward-scattered into the region between the source 
and the first strong bottom reflections. For a smooth reflecting bottom, very little energy reaches this 
region. When incoherent scattering is included in the calculation, the peak angular level at the 
receiver has dropped only ~8 dB at a point 4 km within the region. The ability to make this stochas- 
tic calculation in three dimensions makes ORBS a unique predictive model. Average directional dis- 
tributions can be calculated with deterministic models by Monte Carlo methods, but this requires con- 
siderably more computer effort, especially if done three-dimensionally. 

The second sample case shows how the model can be used for practical array design. For a 
particular configuration of source, ocean bottom, and receiver, the results of several ORBS runs are 
used to produce graphs relating array performance to the roughness parameters. For example, for a 
360-m array at 100 Hz, array signal gain is within 2 dB of reference level when the rms bottom 
roughness ff < 30 m and the correlation length L > 2000 m. Several other combinations of array 
and bottom roughness parameters can be used for such studies to evaluate the effect of ocean bottom 
roughness on array performance. 

The methods used in this three-dimensional boundary-scattering model can be applied to other, 
more general, problems. One multiple-bounce situation is underice sound propagation in the Arctic 
where the rough boundary is at the surface and the bottom is not encountered; the coherence function 
approach can be applied here also. 
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Appendix A 

COHERENCE FUNCTION DEFINITIONS AND PROPAGATION 

In this appendix we derive some explicit results for computing the transformed coherence func- 
tion (or "angular power distribution")—how it propagates in the absence of surface interaction and 
how it changes upon encountering a rough interface. Most discussions of the coherence function rely 
on the parabolic approximation to the Helmholtz equation, thereby choosing a preferred direction of 
propagation. Since in the bottom-scattering problem there are two "namral" directions, the horizon- 
tal propagation direction and the normal to the mean scattering surface, we couch our discussion in 
terms of the Helmholtz equation to avoid picking a preferred direction. The resulting coherence func- 
tion can then be computed with respect to arbitrary planes. 

In general, the two-point mutual coherence function r(r, s) is given in terms of the complex 
pressure field p (r) by 

r(r, s) = <pir + |)p*(r- |)>. (Al) 

The angular brackets indicate an average over the ensemble of ocean boundaries, sound-speed pro- 
files, or sources. To begin, we assume that our ensemble is degenerate, having only one member. 
Since the pressure p obeys the Helmholtz equation 

V2p(r + |) + fc2 «'(r + |)p(r + |) = 0 

V'p*(r - |) -H k^ n\r - |)/7*(r - y) = 0, (A2) 

we find an equation for T by multiplying the first of these equations by /7*(r — s/2) and the second 
by;j(r -I- s/2) and then subtracting.   The result is 

3r    9s 
r(r, s) -kl n\T + |) - n\r - |) r (r, s) 

== -kls- Vn^ (r)r(r, s). (A3) 

The last approximation is called the "locally quadratic" approximation. It is valid when n\r) is 
slowly varying over the domain of the separation variable s for which V is significant. If n is a 
quadratic function of r, the locally quadratic approximation is exact. 
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The solution of Eq. (A3) is found by Fourier transforming with respect to the separation vector 
s in three dimensions. (This differs from the more usual procedure of transforming s over a plane.) 
We then find that in the locally quadratic approximation the transformed coherence function 

t (r, 0) = ^ e--'^'^ T {r, s) d's (A4) 

satisfies the equation        ^ . 

e- -^rir,0) + ^Vn\r)j^r(r,d) = O. (A5) 

This first-order linear equation is solved by the method of characteristics.   In this case the characteris- 
tics turn out to be the rays of geometric acoustics, satisfying the equations 

.     ^=^'       37= 2   ^"(••^- (A6) 

The variable T is related to the arc length of the ray by 

ds = n(r)dT. (A7) 

From the ray equations, Eq. (A6), it follows that "energy" is conserved along the characteristics. 
That is, if the pairs (r,(?) and {KQ, 0Q) are joined by a ray, then 

^ - n\r) = ei - n\ro). (A8) 

The vector 0 is tangent to the rays and gives the local direction of energy propagation. The signifi- 
cance of the characteristics for the coherence function is that Eq. (A5) implies that f is constant along 
characteristics, just as is the "energy" of Eq. (A8). 

It is temptmg to mterpret F as the joint distribution of energy in space and in direction because 
the marginals of F do indeed give the spatial and angular distribution of energy. However, since f 
can be negative for some pressure fields, such an interpretation should only be used with great cau- 
tion. What is more certain is that f contains the acoustic information necessary to determine quad- 
ratic functional of the acoustic field such as outputs of a square-law detector. 

Equation (A5) implies that F is constant along the rays of geometric acoustics.   Hence 

f (r, 0) = tiro, 0o) (A9) 

where (r, 0) and (FQ, ^O) are connected by a ray. Note again that fi is a three-dimensional vector; 
when the parabolic approximation is used, the vector corresponding to s is a two-dimensional vector 
lying in a plane normal to the principal direction of propagation. Here the magnitude, rather than the 
direction of 0, is restricted by Eq. (A8).   To account explicitly for this restriction, we define 

y(r,0; E) = 8(6^ - n\r) - E)r ir,0). (AlO) 
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Since 6^ — n\r) is constant along rays as is F, it follows that 7 is constant along rays.  Furthermore, 
Eq. (AlO) implies that T is given in terms of 7 by 

r{T, 6) = I y {r, 6; E) dE . (All) 

It often happens that information about the pressure field and hence F is restricted to a plane 
surface.   To restrict s to lie in a particular surface, we can integrate 

1^ I f (r, fl) ^<>, = J.-'^»««-« <p(r + |)p*(r - I 

= r(r, 0||), (A12) 

where Sj^ is the component of s perpendicular to the surface in question and S|| is the component 
parallel to that surface. Equations (A 10) and (All) can be used to write the restriction of F to a sur- 
face as 

""' "        27r J-cc 2-JE + n\r) - 6^ 

^h.r   r(r,g||)|^ =-JE +n\r)-ej ^^^^^ 
^ir    -" 2\/E + n\r) - Bj 

By using 

this equation becomes 

52       ,    /)2  _  „2 E = 0OX + ^11 - « (ro) and dE = IBQ^ dd^^ , (A14) 

f (r, fl„) = ^ f f(ro,flo|||goJgo,^go, ^^^^^ 

27r      V^o'ii + el^ - n2(ro) + n\r) - BJ 

To the extent that f (FQ, ©Q) is sharply peaked about ^o|| + ^ox ~ "^(^o) = £■, we can write Eq. 
(A15) as 

Vf - 00^11 + n2(r )   ^ 
r(r, 0||) =      ,_ r(ro, 0o|l)- (A16) 

V£ - Bj + n\r) 

When F is developed from the parabolic approximation, both 0 and OQ are associated with normals to 
vertical planes. In the present development, the plane associated with 0 need not be parallel to that 
associated with BQ, and neither is required to be vertical.   In practice E is taken to be zero. 

Scattering of the Coherence Function 

When a rough surface is encountered, the angular distribution of energy is suddenly altered and 
the distribution of scattered energy is a functional of the distribution of incident energy. We therefore 
make the assumption that the coherence function transform associated with the scattered energy is 
given by 

q • h f,,3, (rg, q) = j X; (k - q)k • n T,^, (r^, k) k^ d^ k. (A17) 
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The transition kernel "£ is closely related to the differential cross section per unit area. This descrip- 
tion of surface scattering is local in the sense that the scattered f at the point Fg on the mean scatter- 
ing plane is determined by the incident f at that same point. In general this is an approximation 
whose validity is hard to assess. We also note that the definition of T is problematic when the propa- 
gation region is bounded, since the Fourier transform that defines f extends over all space while the 
pressure field is defined only in a limited region of space. One therefore must argue that f is 
nonzero only over a limited range of the separation variable s, or that only a limited range of s affects 
the transform. Assuming the vectors r + s/2 lie in the propagation region, the infinite transform of s 
presents no real problems.  This means that r must be kept away from the boundaries. 

In Eq. (A 17), the scattering kernel "£, can be found by considering what happens to a plane 
wave. We assume that f can be defined in a region near enough to the scattering surface so that in 
this region the sound speed may be considered to be a constant. We need a region that is large 
enough so that there is no difficulty in the definition of f but small enough that refraction can be 
ignored.   If such a region exists, we consider the incident plane wave      ' 

, , ikM ■ r 
Pi^) =e "     , (A18) 

for which the corresponding function f is 

^pw (r, 0) = 
2w 

^0 

3 

8^ (0 - k) (A19) 

= r,,Ar,e). 

The corresponding scattered field above the highest points of the scattering surface can be written as a 
superposition of plane waves 

/'scat(r) = le''''«-'-«.'''^^^^^(q||,k||)j2^l|, (A20) 

where ^j^ - \Jk^ - ^|f , and the subscripts || and ± refer to components parallel to and perpendic- 
ular to the mean scattering surface. If only a finite portion of the scattering surface is rough, the 
scattering amplitude in the expression 

^ikr 

^sca. (••) = -^ / (^ k; ^o) (A21) 

is related to the plane wave amplitudes /4(k, q) by 

f(q,k;ko)=2Trkoq^^Aiqpk\\). (A22) 

The differential cross section a for such a finite scattering patch is given by 

Kr, 
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from Ref. Al. If p such roughness elements per unit area scatter independently and incoherentlv. 
then pff is the differential cross section per unit area. Correspondingly, if the surface is randomly 
rough with homogeneous statistics, the fluctuations of the plane-wave scattering amplitudes satisfy 

<AA (0|| + -^,.k||) A^* (.^11 - -^, k||)>  = 52 (q||) A (0||, k||). (A24) 

The function f that arises from products of the amplitude fluctuations AA, Tl^lf^, is given by 

r,r' (r, fl) = I e-''""' j .'*«"« e'*^'^^ A (0||, k,,) d.^,, d, , (A25) 

rS°'is given by 
where (/)_L = yk^  - (jyj, and where we assume that  |k|||   < ^Q-   It follows from Eq. (A25) that 

rL"aT' (r, e) = (iirf ^^^ ~ 1^1^ Vi - ej A {k^ e^^, k,,). (A26) 
'-0 

On the other hand, if in Eq. (A17) we use 

3 

rjnc (r> <!>) 
27r 

^0 

R3 5' («A - k), 

it follows that 

■    eh f^^^ (r, d) = (Zir)^ (k- ft) ^^'=°\k ^ 0). (A27) 

Hence we conclude that the scattering kernel for incoherent scattering is given in terms of fluctuations 
of the scattered plane wave amplitudes by 

q-h-^ik^koO) = g2   ^(^ ~  l^|) A(A:ofl||,k||). (A28) 
KQ 

By comparing to results for a surface consisting of distinct, incoherent scattering patches, we find that 
A, the strength of the plane-wave amplitude fluctuations, is related to the differential cross section per 
unit area by 

A(p||,9||) = -^a(q^p). (A29) 
PI 

There is also a part of T associated with the average of the plane wave scattering amplitudes, 
<A(q, k)>.   For homogeneous surface statistics, <A(q,k)> is proportional to a delta function 

<^(q, k)>  = 6(k|| - q||) a (q\\). (A30) 

In the Kirchhoff approximation, for example, a(q||) is given by 

«(q||) = ^"''^'' . (A31) 
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The contribution to the scattered function f arising from the coherent scattered amplitudes is 

r^cai(r,e) = |a(0)|2fi„,(r,0i„,) 

or 

rs'^iJ (r, 0||, ej =  I a(0) 12 fi„e (r, fl||, -ej. (A32) 

Energy conservation requires that the incident energy flux equal the total of the scattered energy flux 
normal to the mean scattering plane.   In terms of a and A this means 

k 
1^(^)1^ + i~^(^||'*l||) ^^^11 = 1- .    (A33) 

"-L 

In the Kirchhoff approximation, this relationship is only approximately satisfied. 

Reference 

Al.   D.H. Herman and J.S. Perkins, "The Kirchhoff Approximation and First-Order Perturbation 
Theory for Rough-Surface Scattering," J. Acoust. Soc. Am. 78, 1045-1051 (1985). 
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Appendix B 

ARRAY SIMULATION AND THE COHERENCE FUNCTION 

In this appendix, we show how array response is expressed in terms of the three-dimensional 
coherence function transform discussed in Appendix A. We confine our discussion to a linear array, 
but the array may be arbitrarily oriented. The possibility of off-broadside orientation requires use of 
the three-dimensional coherence function transform. 

Let c be a three-vector that locates the center of a linear array of hydrophones. Let e^, denote a 
unit vector pointed along the array. Then, the signal that results from (a) steering the array, (b) shad- 
ing the array, and (c) summing the steered, shaded fields at each hydrophone is given by 

Aie,) = \W(y)p{c + yh)e 
-ik^ sin 9j dy. (Bl) 

The shading function W allows for either discrete or continuous arrays. The pressure p at the point 
c -I- }'ei is denoted as /;(c -I- e^j). Often the signal out of an array is squared to form the power. 
Equation (Bl) implies that the power is given by 

M(0,)|2 = j f W(y,) W^(y^)p{c + Jiejp^c + yz^L^ "''*°^'~'^^ "''^}'l^}'2• (B2) 

This expression contains the product of pressures at two different points and therefore can be 
expressed in terms of f.   Changing to mean and difference coordinates, we can write 

P(c + yxh)P*<S + yz^t) = 

Therefore the array power /l^ is given by 

f (c + ^^i^^e,).''^°^'-^^^^Ve. 

^0 

27r 
\d^et{c + y-ej^,e)e 

ik^ifi- e^-sinSj) 

(B3) 

(B4) 

A more succinct expression for the power can be obtained by defining an analog of f for the shading 
functions.   Let a(>, 6, 6^) be given by 

i(y,B,e,) = \W(y + ^)W*(y - ^) e 
S ,     ikf^ifi- e^-sinflj 

ds . (B5) 

Equation (B4) becomes 

\A{e,)\^ = \\a{y,e,e,)f{c +ytL,e)d^edy. (B6) 
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Note thata(Y,e,e,) depends on 6 only through e^ • ^ = sin ^p.  The angle xj, is the arrival angle at the 
array measured from broadside.   It follows that Eq. (B6) simplifies to 

\A(es)\^ = ^\a(y,xP,d^)r{c+yeL,e)d^edy. (B7) 

We assume that by judicious choice of kQ we can make f sharply spiked about \0\  = I    By using 
Eqs. (AlO)and(All), wefind .      ,      :,. i    i ^        e 

M(^.)|^ = H«0'''AA) ~-^i^ + yh,^,^,e = ^E +n^)co^^dxPd^dydE ,        (B8) 

where     . 

n^ = n\c + yti). 

If, in fact, r is proportional to a delta function in E,V = FQ 8 (E), then 

..,, M(^.)|^ = HI Y«^(c + yh)a(y,xl'AWo(c + yh,i^,^) cos xPdyPdQdy (B9) 

where 

ro(r,i/',0) = fo (r,n(r) (sin i/' e^ + cos \}/ cos fl e^ + cos i/' sin fl e^)). (BIO) 

(The unit vectors e^^ and ey are defined below.) 

We model a shaded array of iV discrete hydrophones located at positions along the array, j,, by 

W(y) = j:W,8(y - j,). (fill) 
i 

The shading ftmction applied to each hydrophone is denoted w,.   The function a(y,rP,d,) that sum- 
marizes intrinsic array properties is now given by 

(B12) 

Note that a is nonzero not only at hydrophone positions but also between hydrophone positions at 
CV; + >';)/2.   By using this expression for a, the array power can be written 

1^(0.)!'= ' :'   _■ 

v^ f f 1   2.     >''•+>'/- -        yi + yi 
L]]^n ic + eL)a(y,rP,e,)roic +  -^6^,1^,0) cos xJ^drPdQ. (B13) 
',j 

Equation (B13) is the central result of this appendix. 
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The function a summarizes the intrinsic array properties. We now comment on the description 
of the array geometry. We have denoted a unit vector pointing along the array by e^^. Let z be the 
unit vector pointing downward.   We define a unit horizontal vector perpendicular to the array by 

er   X z 

\ftL   X   Z| 

If there is no array yaw, e^/ points generally in the direction from the receiver back to the source. A 
third orthogonal array fixed coordinate is defined by e^ x Ci = Cy. The angles xp and Q are chosen 
so that an arbitrary direction of arriving energy 6 can be written 

6 = sin xp ei + cos ^ cos 12 6^+ cos \}/ sin Q ey. (B15) 

If the array is yawed by an amount a and then tilted by an amount (3 (order is important for 
rotations!), then e^ is given by 

e^ = — sin a cos /3 x - cos a cos |8y + sin |8 z. (B16) 

In similar fashion, the array-fixed unit vectors e^ and Cy can be expressed in terms of a, jS, and the 
space-fixed unit vectors x, y, z. 

If energy arrives along the unit vector 

0 = cos 6 cos (j) X - sin 6 cos <^ y + sin 0 z, (B17) 

then 

e^- 0 — cos /3 cos <t> sin (6 - a) + sin ^ sin </> (B18) 

= sin 0'. 

Thus if a = 0, sin xp = ti- 0 = sin 9'. This is Eq. (11) of the text. Similar considerations are 
required to map directions \p and Q specified relative to array-fixed axes into angles relative to space- 
fixed axes. Finally note that the angle defined in Eq. (B15) is the cone angle appearing in Eq. (B13) 
and in Fig. 2. 
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Appendix C 

TRACING THE CHARACTERISTIC PATHS 

The tracing algorithm used in ORBS computes closed-form solutions for layer-to-layer path 
increments in a range-independent stratified sound-speed structure, so that the paths may be computed 
efficiently for a general multilayer deep-ocean profile. The profile is entered as a set of depth-sound 
speed pairs {z,, c,}, and an interpolating function of the form 

C(Z) = C,[l  - Igiiz   - Z,•)]"^/^   Zi   < Z   ^ Zi+i (Cl) 

is used; g, is a fitting parameter for the ith layer.   One way of expressing the solution for the path 
for this interpolating function [Cl] is 

tan0 = tan</),- - rg,- (c„/c,•)^ (C2) 

where 4> is the angle measured down from the horizontal, r is the range in the /th layer (the path 
enters the layer with angle 4>i), and the parameter c„ is defined by Snell's Law: 

c = c^ cos (/). (C3) 

In addition to the layer-by-layer trace of path increments, we need an efficient way of tracing a 
path to its intersection with the bottom. In ORBS, this is done by assuming that the paths contact the 
bathymetry only in deep water (z > 3000 m), where the depth gradient of the sound speed is approx- 
imately constant and a simplified tracing algorithm can be used. The bottom layer of the profile is 
fitted to the linear interpolating function 

c{z) ^ C + Gz. (C4) 

Then, the path solution can be written 

sin </) = sin 0,- - rG Ic^ , (C5) 

where <^, <^, and c„ are as defined above, and r is the range in the bottom layer.   Now suppose the 
mean bottom plane intersects the vertical plane of the path in a line whose equation is 

z = zo + hr. (C6) 

To find the point where the path intersects the bottom plane, define c^ as the sound speed at the bot- 
tom intersection and combine the last three equations (and Snell's Law) to obtain a quadratic in C/,: 

(l + h^)c^ - 2Bch + B^ - QicJ- = 0, (C7) 
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where B = C + GZQ + hc^ sin </>,. This equation can be solved by the quadratic formula. (If no 
solution exists, the path misses the bottom and is not a contributor to the scattered or reflected 
energy.)  The range and depth of the bottom hit are now linear functions of c^. 

Reference 

Cl.   M.A. Pedersen and D.F. Gordon, "Normal-Mode Theory Applied to Short-Range Propagation 
in an Underwater Acoustic Surface Duct," J. Acoust. Soc. Am. 37, 105-118 (1965). 

-A 
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Appendix D 

COMPUTING THE SCATTERING CROSS SECTION 

The scattering cross section governs the fraction of energy impinging upon the bottom that is 
scattered in each direction. It is a fiinction of the bathymetric spectrum and the direction of the 
incoming energy. The model incorporated in ORBS is based on a combination of small perturbation 
theory and the Kirchhoff approximation [Dl]. This model reduces to perturbation theory for small 
surface heights and to conventional Kirchhoff theory for gently undulating surfaces with large surface 
heights. Thus, the region of validity of the model is at least as great as the union of the regions of 
validity of its limiting forms. 

Let q be the wave vector incident upon the bottom and let k be the wave vector in a scattered 
direction. According to Kirchhoff theory, the proportion of the incident energy reflected coherently 
(in the specular direction) is given by 

where q^ is the component of q normal to the mean surface, and a is the rms residual bottom height. 
The remainder of the incident energy is scattered in the nonspecular directions. The cross section per 
unit area for incoherent scattering from the incident direction q to the scattered direction k may be 
written [Dl]: 

ff(q - k) =  V- {^? ^1,1 + 2R fcift-,/i,-i + bU /_i,_i], (D2) 
\6'K q^ 

where R is an elastic coefficient between — 1 (perfectly soft bottom) and +1 (perfectly hard bottom) 
and 

4„ = I exp [Kq - k)- r] {exp [\mKo^W{r)\ - l]/(X„X„)dV , (D3a) 

^m~?+'"'^'      m = ±l, (D3b) 

and 

b^  = [{q^ + mk^f +   I q|| - k,, | 2] exp (- \i(?/2). (D3c) 

In the Eqs. (D3), the subscript z designates the component of a vector normal to the mean surface, 
and the subscript || designates the components parallel to the surface. The function W{r) in Eq. 
(D3a) is the normalized correlation function of surface-height fluctuations, 

W{r) = <h{r)h{Q)>/<h\Q)> , (D4) 
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where h (r) is the height of the scattering surface above the point specified by the two-dimensional 
vector r in some reference plane. The two-dimensional surface height spectrum is defined by a two- 
dimensional Fourier transform of W{r): 

^^^^ = "^ \\ exp (/k- r) W{r)d^r , (D5) 

where the rms surface roughness <h\0)> is denoted by o^.   By inversion of the transform of Ea 
(D5), W(r) satisfies 

Wir) = {lira)-^ exp(-ik-r)S(k)d^k. (D6) 

In the examples to follow, consider the isotropic bathymetric correlation function 

W{r) = (r/L,)Kiir/L,), (D7) 

where K^ is the first-order modified Bessel function of the second kind, as a function of the scalar 
separation r = | r | . This choice of W(r) corresponds to a A;""* dependence in the high-wave-number 
region of the spectrum; specifically, the spectrum obtained by transforming Eq. (D7) is 

S{k) = 4w(aL,f [I + (kL)Y\ (D8) 

where k = | k | and L^ is the correlation length of the bottom height variations about the reference 
plane. (Other choices for W(r) may be considered, such as a Gaussian, which makes Sik) a Gaus- 
sian also.) 

Figure Dl shows the results of cross-section calculations with the correlation function and spec- 
trum of Eqs. (D7) and (D8), with L, = 1600 m, ff = 30 m, and for a 100 Hz source impinging at a 
grazing angle of 20° to the mean bottom. For such a large roughness, we would not expect perturba- 
tion theory to be accurate but would expect Kirchhoff theory to be valid. The cross section is plotted 
in Fig. Dl, where the modified Kirchhoff result is plotted on the top as a function of outgoing verti- 
cal and azimuthal angles, and the corresponding perturbation and standard Kirchhoff results are 
below. The plot also shows the position and value of the maximum of each of the three formulations. 
As expected, the modified Kirchhoff calculation is accurate in this region (as shown by comparison 
with the standard Kirchhoff result), while perturbation theory is in error by several orders of magni- 
tude.   Further examples are contained in Ref. D2. 

As stated in Section 2, hundreds of thousands of evaluations of the cross section are needed in a 
typical ORBS calculation. The most time-consuming part of the calculation is the numerical computa- 
tion of the integral in Eq. (D3a), which is needed for Eq. (D2). We have simplified the calculation 
by a technique that falls into the class of approximations called exponential substitution [D3,D4]. The 
integral to be evaluated is of the form 

/(Q) = j j exp (iQ ■ s) { exp [HWis)] - l]dh . (D9) 

We assume that we can approximate this integral by 

y(Q) = j j exp (jQ- s) AW(s/so)d^s , (DIO) 

where A and SQ are parameters to be chosen.   With a change of variables we obtain 

7(Q) = 5o^ A j j exp (isQ- x) Wix)d^x . (Dl 1) 
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MODIFIED KIRCHHOFF 

!: ( 20.0, 0.0) =   43.08 
100 Hz 
^,n = 20 deg 
Q   = 0 deg 

a   =    30 m 
Li = 1600 m 
L2 = 1600 m 

HARD BOTTOM 

PERTURBATION RESULT 

S ( 20.0, 0.0) =   999999.00 

KIRCHHOFF RESULT 

S ( 20.0, 0.0) =   43.08 

Fig. Dl — Scattering cross section as a function of vertical and azimuthal 
angles obtained by using the exact formulation 
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The integral in Eq. (Dll) is the two-dimensional Fourier transform of the bathymetric correlation 
function, which by definition gives the bottom-height spectrum 5 (Eq. (D5)), that is, 

7(Q) = s^ A S{Qso)/a^ (D12) 

We now choose A so that the integrands of / and J are equal for 5 =0, obtaining 

A = exp(//) - 1. (D13) 

There are many ways to choose SQ.  It is convenient and accurate to require that 

J\Q=O  =  I\Q=O- (D14) 

This means that the approximation is exact in the specular direction.   The result is 

fo^ j I exp [HWis) - l]d^s \ 
^0 = 1 H   I- (D15) 

L S(0){e" - 1) J 

This defines ^Q as a function of H that in general is very smooth and readily tabulated. Its 
evaluation is then simply a matter of table look-ups and interpolation. Because as S{k) is often given 
in a simple closed form (for example, if W is Gaussian or as in Eq. (D7)), the evaluation of the cross 
section, Eq. (D2), is greatly reduced in complexity by exponential substitution. 

Figure D2 shows the result of using the approximation for the same case as Fig. Dl. The 
differences in the modified Kirchhoff result between Figs. Dl and D2 are minimal. The peak values 
(for Q = q — k = 0) are virtually identical, but of course this is one of the conditions set by Eq. 
(D13). The difference in total scattered energy corresponding to the two functions, computed by 
numerical integration, is <7%. On a VAX-11/780 computer, it took 90 min of CPU time to calcu- 
late the results in Fig. Dl, while Fig. D2 took —90 s, with a significant percentage taken up in the 
plotting. Thus, using this approximation reduces computational time by almost two orders of magni- 
tude. 

The bathymetric statistics are easily generalized to model an anisotropic bottom. An example of 
an anisotropic bottom spectrum with different correlation lengths in the x- and j-directions is 

5(k) = 4Tra^L^ [1 + fc^L^]-^ (D16) 

where the vectors L = (L^, Ly) and k = {k^, ky) and L^ = L^Ly. This spectrum is a generalization 
of the spectrum of Eq. (D7). It has the same k^'^ dependence in the high-wave-number tail when 
evaluated along either principal axis in A:-space. By use of the coordinate transformation 
k' = {k^ ^LjLy, ky^LyiL^), the transform integral for the correlation function (Eq. (D6)) can put 
into the same form as the isotropic case, and the correlation function W{T) is equal to 

W{r') = {r'/L^)K,{r'/L^), (D17) 
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MODlFiEDJORCHHOFF 

E ( 20.0, 0.0) =   43.05 
100 Hz 
^,„ = 20 deg 
a   = 0 deg 

CT  =    30 m 
Li = 1600 m 
L2 = 1600 m 

HARD BOTTOM 

PERIU R B ATI 0_N_RESU LJ 

E ( 20.0, 0.0) =   999999.00 

KIRCHHOFF RESULT 

i: ( 20.0, 0.0) =   43.05 

Fig. D2 — Scattering cross section as a function of vertical and azimuthal 
angles obtained by using the exponential substitution approximation 
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where the vector r' = (x ^Ly/L^, y ^LjLy, and r' = | r' | . Then the Kirchhoff integral assumes 
the same form as in the isotropic case, and the same method of exponential substitution outlined 
above can be used to approximate it.   The result is that J(Q) is equal to 

J{Q')= Ksl S{s^Q')/a', (D18) 

where the vector Q' = {Q^ ^LjLy, Qy -jLy/L^). Anisotropic bottom statistics are thus introduced 
by specifying two correlation lengths in the principal directions and using them to define a scale 
change in the coordinate system in /:-space. This type of anisotropic spectrum could be used to 
represent, for example, a sloping bottom with furrows running along the direction of the slope. This 
would be the direction with larger correlation length. 
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Appendix E 

PROGRAM DATA INPUTS 

This appendix consists of an outline of the input data for ORBS and a sample data file. 

There are two ways of specifying a field of coherence-function values to start up the program: 

• The program can read from a binary file of values of the coherence function transform, com- 
puted from a PE computation, for a PE computation for a succession of source-cylinder ranges. This 
allows the source-receiver range to be varied for a given computed sound field. 

• A simulated field can be used. The energy at the source cylinder is distributed in a two- 
dimensional Gaussian about a mean depth and a mean vertical direction. In this case the random- 
access file and FORTRAN unit 4 are not needed. The flag for choosing the startup method is on 
record 4. 

Read in the data in the following series of card images (note that it was considered convenient to 
use the format (10F8) for all data): 

Record 1:   Any alphanumeric title in columns 1-72 

Record 2:   RPKM,RCKM,ZC,ALPHAD,BETAD,XL,XN,XMODE 

RPKM —   Source cylinder range (km) 

RCKM —   Range (km) of center of array (point C) 

ZC —   Depth (m) of point C 

ALPHAD     —   Array yaw (rotation about vertical) (deg).   Zero 
yaw means the array is broadside to the source.   Positive 
yaw is counterclockwise as seen from above. 

BET AD        —   Array tilt (deg) in vertical plane about point C. 
Positive tilt is clockwise as seen from the source. 

XL —   Length of array (m) 

XN —   Number of phones in array 

XMODE       —   A flag 0. to 7.:        set 4-bit to omit direct paths 
set 2-bit to omit reflected paths 
set 1-bit to omit scattered paths 
(But enter with decimal point) 

37 



WRIGHT, BERMAN, BAER, AND PERKINS 

Record 3:   SIGMAS,CLX,CLY,ZBC,ZMAX,SLOPED,YAWD,SPOW,GAMMAD 

SIGMAS      —   rms roughness (m) of the bottom; i.e., the standard 
deviation of residual bottom heights about mean bottom plane 

CLX —   Correlation length (m) of residual bottom height 
distribution, measured in slope direction in mean bottom plane 

CLY —   Correlation length (m) of bottom height distribution, 
measured in cross-slope direction in mean bottom plane.   Note 

'    ' that these measurement directions can be rotated by specifying 
a nonzero skew angle.   For an isotropic bottom, enter CLY equal 

'- to CLX (see GAMMAD). 

ZBC —   Depth of mean bottom plane (m) directly under the array 
center 

ZMAX —  Maximum water depth (m) 

SLOPED      —   Slope (deg) of mean bottom plane.   A positive 
slope is downward from receiver toward source. 

YAWD —   Yaw (rotation about vertical) (deg) of bottom. 
( Zero yaw means isobaths in the mean bottom plane are 

broadside to the source.   Positive yaw is counterclockwise 
as seen from above. 

SPOW —   Inverse power-law exponent for bottom roughness spectrum. 
ORBS models a power spectral density for residual bottom 
heights asymptotic to k** (-SPOW), where k is the spatial wave 
number.   Values of 4, 5, and 6 may be used for power-law spectra; 
a value of 0 will cause a Gaussian spectrum to be used. 
(These are the only values for which tables for the exponential substitution 
algorithm have been provided.) 

GAMMAD   —   Roughness ellipse skew angle (deg) (CCW from above). 
If CLX = CLY, the value of GAMMAD is irrelevant (enter zero in 
this case). 

Record 4:   FHZ, GAMO, ZS, SIGZS, SBEAMD, SIGSBD, XNSVP 

FHZ 

GAMO 

ZS 

Acoustic frequency (Hz). 

Peak value for simulated coherence function at the source 
cylinder, as described above.   (Reconmiended value:   1.0 to use 
simulated source; put GAMO = 0. to use the PE-generated startup file.) 

Depth (m) of peak coherence function value for simulated 
beamed source 

SIGZS Standard deviation in depth (m) of Gaussian distribution 
for simulated beamed source 
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SBEAMD     —   Angle (deg) of peak coherence function value for simulated 
beamed source.  AO is positive for a beam directed downward from the 
source. 

SIGSBD        —   Standard deviation in angle (deg) of Gaussian 
distribution for simulated beamed source 

(The values of ZS, SIGZS, SBEAMD, and SIGSBD are irrelevant if GAMO = 0.) 

XNSVP        —   Number of depth-sound speed pairs in profile to follow 

Record 5:   PSI1D,DPSI,PSI2D, OMEGAlD,DOMEGAD,OMEGA2D, DGRZD 

PSIID —   Minimum beam angle (deg) for calculation 

DPSID —   Beam angle increment (deg) 

PS12D —   Maximum beam angle (deg) for calculation 

OMEGA ID —   Minimum depression angle in beam cone (deg) 

DOMEGAD —   Depression angle increment (deg) 

OMEGA2D —   Maximum depression angle in beam cone (deg) 

DGRZD        —   Angle increment (deg) in incident fan of paths 
from scattering point to source cylinder 

Record 6:   (Z(L), C(L), L = 1, NSVP) 

Z —   Array of depths (m) for sound speed profile 

C —   Array of corresponding sound speeds (m/s) 
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